Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Mol Biol Rep ; 51(1): 177, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38252254

RESUMO

INTRODUCTION: ADP-stimulated elevation of cytosolic Ca2+ is an important effector mechanism for platelet activation. The rapidly elevating cytosolic Ca2+ is also transported to mitochondrial matrix via Mitochondrial Ca2+ Uniporter (MCU) and extruded via Na+/Ca2+/Li+ Exchanger (NCLX). However, the exact contribution of MCU and NCLX in ADP-mediated platelet responses remains incompletely understood. METHODS AND RESULTS: The present study aimed to elucidate the role of mitochondrial Ca2+ transport in ADP-stimulated platelet responses by inhibition of MCU and NCLX with mitoxantrone (MTX) and CGP37157 (CGP), respectively. As these inhibitory strategies are reported to cause distinct effects on matrix Ca2+ concentration, we hypothesized to observe opposite impact of MTX and CGP on ADP-induced platelet responses. Platelet aggregation profiling was performed by microplate-based spectrophotometery while p-selectin externalization and integrin αIIbß3 activation were analyzed by fluorescent immunolabeling using flow cytometery. Our results confirmed the expression of both MCU and NCLX mRNAs with relatively low abundance of NCLX in human platelets. In line with our hypothesis, MTX caused a dose-dependent inhibition of ADP-induced platelet aggregation without displaying any cytotoxicity. Likewise, ADP-induced p-selectin externalization and integrin αIIbß3 activation was also significantly attenuated in MTX-treated platelets. Concordantly, inhibition of NCLX with CGP yielded an accelerated ADP-stimulated platelet aggregation which was associated with an elevation of p-selectin surface expression and αIIbß3 activation. CONCLUSION: Together, these findings uncover a vital and hitherto poorly characterized role of mitochondrial Ca2+ transporters in ADP-induced platelet activation.


Assuntos
Cálcio , Selectina-P , Humanos , Complexo Glicoproteico GPIIb-IIIa de Plaquetas , Plaquetas , Proteínas de Transporte da Membrana Mitocondrial , Mitoxantrona
2.
Eur J Hum Genet ; 31(12): 1447-1454, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37821758

RESUMO

Intellectual disability (ID) and retinal dystrophy (RD) are the frequently found features of multiple syndromes involving additional systemic manifestations. Here, we studied a family with four members presenting severe ID and retinitis pigmentosa (RP). Using genome wide genotyping and exome sequencing, we identified a nonsense variant c.747 C > A (p.Tyr249Ter) in exon 7 of AGPAT3 which co-segregates with the disease phenotype. Western blot analysis of overexpressed WT and mutant AGPAT3 in HEK293T cells showed the absence of AGPAT3, suggesting instability of the truncated protein. Knockdown of Agpat3 in the embryonic mouse brain caused marked deficits in neuronal migration, strongly suggesting that reduced expression of AGPAT3 affects neuronal function. Altogether, our data indicates that AGPAT3 activity is essential for neuronal functioning and loss of its activity probably causes intellectual disability and retinitis pigmentosa (IDRP) syndrome.


Assuntos
Deficiência Intelectual , Retinite Pigmentosa , Animais , Humanos , Camundongos , Exoma , Células HEK293 , Deficiência Intelectual/genética , Mutação , Linhagem , Retinite Pigmentosa/genética
3.
JHEP Rep ; 5(3): 100647, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36718430

RESUMO

Background & Aims: Chronic HCV infection causes cellular stress, fibrosis and predisposes to hepatocarcinogenesis. Mitochondria play key roles in orchestrating stress responses by regulating bioenergetics, inflammation and apoptosis. To better understand the role of mitochondria in the viral life cycle and disease progression of chronic hepatitis C, we studied morphological and functional mitochondrial alterations induced by HCV using productively infected hepatoma cells and patient livers. Methods: Biochemical and imaging assays were used to assess localization of cellular and viral proteins and mitochondrial functions in cell cultures and liver biopsies. Cyclophilin D (CypD) knockout was performed using CRISPR/Cas9 technology. Viral replication was quantified by quantitative reverse-transcription PCR and western blotting. Results: Several HCV proteins were found to associate with mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs), the points of contact between the ER and mitochondria. Downregulation of CypD, which is known to disrupt MAM integrity, reduced viral replication, suggesting that MAMs play an important role in the viral life cycle. This process was rescued by ectopic CypD expression. Furthermore, HCV proteins were found to associate with voltage dependent anion channel 1 (VDAC1) at MAMs and to reduce VDAC1 protein levels at MAMs in vitro and in patient biopsies. This association did not affect MAM-associated functions in glucose homeostasis and Ca2+ signaling. Conclusions: HCV proteins associate specifically with MAMs and MAMs play an important role in viral replication. The association between viral proteins and MAMs did not impact Ca2+ signaling between the ER and mitochondria or glucose homeostasis. Whether additional functions of MAMs and/or VDAC are impacted by HCV and contribute to the associated pathology remains to be assessed. Impact and implications: Hepatitis C virus infects the liver, where it causes inflammation, cell damage and increases the long-term risk of liver cancer. We show that several HCV proteins interact with mitochondria in liver cells and alter the composition of mitochondrial subdomains. Importantly, HCV requires the architecture of these mitochondrial subdomains to remain intact for efficient viral replication.

4.
Braz. J. Pharm. Sci. (Online) ; 58: e20007, 2022. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1394052

RESUMO

Abstract The prolonged entry of large amounts of calcium into the mitochondria through the mitochondrial calcium uniporter complex (MCUC) may cause the permeability transition pore (mPTP) to open, which contributes to the pathogenesis of several diseases. Tissue-specific differences in mPTP opening due to variable expression of MCUC components may contribute to disease outcomes. We designed this study to determine differential mPTP opening in mitochondria isolated from different regions of mouse brain and kidney and to compare it with the expression of MCUC components. mPTP opening was measured using mitochondria isolated from the left/right brain hemispheres (LH/RH, respectively) and from kidney cortex/medulla, while the expression level of MCUC components was assessed from total cellular RNA. Interestingly, LH mitochondria showed less calcium-induced mPTP opening as compared to RH mitochondria at two different calcium concentrations. Conversely, mPTP opening was similar in the renal cortex and renal medulla mitochondria. However, the kidney mitochondria demonstrated bigger and faster mPTP opening as compared to the brain mitochondria. Furthermore, asymmetric mPTP opening in the LH and RH mitochondria was not associated with the expression of MCUC components. In brief, this study demonstrates thus far unreported asymmetric mPTP opening in mouse brain hemispheres that is not associated with the mRNA levels of MCUC components.


Assuntos
Animais , Masculino , Feminino , Camundongos , Encéfalo , Cálcio/agonistas , Cérebro/anormalidades , Poro de Transição de Permeabilidade Mitocondrial/análise , Camundongos , Mitocôndrias , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/efeitos adversos , Córtex Renal
5.
Iran J Pharm Res ; 20(3): 419-430, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34903998

RESUMO

Timely repair of damaged skin is very important to maintain the integrity and homeostasis of skin, but the wound healing process is compromised in diabetic patients due to several extrinsic and intrinsic factors thus lead to leg amputation and death eventually. Sirtuins, a family of seven conserved proteins are known to be associated with pathophysiological processes of the skin. The most important among them are sirt1and sirt3 involved in cell regeneration and cell survival. Naphthoquinone derivatives have a wide range of therapeutic properties, but the potential diabetic wound healing activity of lapachol has not been identified yet. The present study thus aimed to investigate the wound healing effects of lapachol in a diabetic mouse model. Diabetic wounded mice were divided into 3 groups; vehicle, lapachol 0.05%, and lapachol 0.1%. Skin samples collected from diabetic wounded mice on different time points after treatment for 10 consecutive days were subjected to downstream analysis by western blot, ELISA and histology. Lapachol treatment was found to enhance the expression of sirt1/sirt3 and other proteins involved in cell migration and blood vessel formation. The tissue development rate was increased by lapachol treatment with better collagen deposition. Interestingly, lapachol treatment also gave rise to a high concentration of growth factors resulting in speedy and timely recovery of injured skin. In summary, our findings suggest that lapachol promotes efficient wound healing in a diabetic mouse model by increasing the expression of sirt1 and sirt3 and other proteins related to wound repair and skin regeneration including α-PAK, RAC1/CDC42, VEGF and growth factors viz PDGF and VEGF. This research work finds a novel potential activator of sirtuins in the form of lapachol and depicts the role of activated sirtuins in diabetic wound healing.

6.
J Pak Med Assoc ; 70(11): 1887-1896, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33341825

RESUMO

OBJECTIVES: To evaluate liver and inflammatory biomarkers in occupationally exposed radiology workers. METHODS: The descriptive study was conducted at Mufti Mehmood Memorial Teaching Hospital and Gomal Centre of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan, Pakistan, from September 2017 to May 2018, and comprised X-ray technicians working 48-72 hours per week, and a group of age- and gender-matched unexposed healthy controls. The exposed group was divided into three sub-groups based on their radiation work duration. Liver health status involved estimation of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, gamma-glutamyl transferase GGT and bilirubin through automated chemistry analyser, while serum tumour necrosis factor-alpha and interleukin- 6 levels through enzyme-linked immunosorbent assay technique. Relative gene expression analysis of tumour necrosis factor-alpha and alkaline phosphatase was performed through reverse transcription-polymerase chain reaction. Data was analysed using SPSS 20. RESULTS: Of the 70 subjects, 50(71.4%) were cases with a mean age of 36.98±8.07 years and 20(28.6%) were controls with a mean age of 36.80±7.78 years. Serum alanine aminotransferase and alkaline phosphatase levels showed significant elevation in the cases compared to the controls (p<0.0001), although alanine aminotransferase levels were within the normal range. The difference in aspartate aminotransferase, gamma-glutamyl transferase and bilirubin levels was not significant (p>0.05). Tumour necrosis factor-alpha concentration was significantly high in the cases compared to the controls (p<0.0001). In contrast with proteomic analysis, relative gene expression analysis revealed reduced level of alkaline phosphatase and tumour necrosis factor-alpha in the cases compared to the controls (p<0.05). CONCLUSIONS: Serum proteomic analysis of X-ray technicians indicated acute inflammatory conditions, while genomic analysis exhibited down-regulation of alkaline phosphatase and tumour necrosis factor-alpha genes.


Assuntos
Fosfatase Alcalina , Fator de Necrose Tumoral alfa , Adulto , Alanina Transaminase , Aspartato Aminotransferases , Estudos de Casos e Controles , Humanos , Fígado , Pessoa de Meia-Idade , Paquistão , Proteômica , Raios X
7.
Cells ; 9(12)2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33255741

RESUMO

Following a prolonged exposure to hypoxia-reoxygenation, a partial disruption of the ER-mitochondria tethering by mitofusin 2 (MFN2) knock-down decreases the Ca2+ transfer between the two organelles limits mitochondrial Ca2+ overload and prevents the Ca2+-dependent opening of the mitochondrial permeability transition pore, i.e., limits cardiomyocyte cell death. The impact of the metabolic changes resulting from the alteration of this Ca2+crosstalk on the tolerance to hypoxia-reoxygenation injury remains partial and fragmented between different field of expertise. >In this study, we report that MFN2 loss of function results in a metabolic switch driven by major modifications in energy production by mitochondria. During hypoxia, mitochondria maintain their ATP concentration and, concomitantly, the inner membrane potential by importing cytosolic ATP into mitochondria through an overexpressed ANT2 protein and by decreasing the expression and activity of the ATP hydrolase via IF1. This adaptation further blunts the detrimental hyperpolarisation of the inner mitochondrial membrane (IMM) upon re-oxygenation. These metabolic changes play an important role to attenuate cell death during a prolonged hypoxia-reoxygenation challenge.


Assuntos
Translocador 2 do Nucleotídeo Adenina/metabolismo , Trifosfato de Adenosina/metabolismo , Hipóxia/metabolismo , Mitocôndrias/metabolismo , Animais , Cálcio/metabolismo , Morte Celular/fisiologia , Linhagem Celular , Potencial da Membrana Mitocondrial/fisiologia , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Membranas Mitocondriais/metabolismo , Miócitos Cardíacos/metabolismo , Ratos
8.
Iran J Basic Med Sci ; 23(9): 1139-1145, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32963735

RESUMO

OBJECTIVES: Lapachone is a natural naphthoquinone-derived compound found in Tabebuia avellanedae. It is well-known for its analgesic, anti-inflammatory, anti-microbial, diuretic, and anti-cancerous effects. However, the wound-healing effects of this compound are not known yet. The aim of this study was to investigate the wound healing activity of naphthoquinones (α-lapachone and ß-lapachone) from Handroanthus impetiginosus. MATERIALS AND METHODS: Expression of Sirt3, migration-related proteins (Rac1, Cdc42, α-Pak) and angiogenesis-related protein of vascular endothelial growth factor (VEGF) was monitored using western blot analysis. Blood vessel formation and tissue development were monitored by angiogenesis assay and hematoxylin & eosin (H & E) staining, respectively on mouse skin tissue samples. Both α-lapachone and ß-lapachone increased Sirt3 expression in vivo, but only ß-lapachone increased Sirt3 expression in vitro. RESULTS: Both the compounds accelerated wound healing in cultured skin cells as well as mouse skin; however, ß-lapachone was more effective at lower concentrations. Both of the compounds increased the expression of migration-related proteins both in vitro and in vivo. Similarly, α-lapachone and ß-lapachone increased VEGF expression, tissue development and blood vessel formation in mouse skin. CONCLUSION: These findings indicated that α-lapachone and ß-lapachone are novel Sirt3 activators, and Sirt3 has a role in wound healing. Thus, Sirt3 and its regulators come out as a novel target and potential drug candidates, respectively in the important field of cutaneous wound healing.

9.
Hum Mol Genet ; 27(18): 3177-3188, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29893856

RESUMO

Exploring genes and pathways underlying intellectual disability (ID) provides insight into brain development and function, clarifying the complex puzzle of how cognition develops. As part of ongoing systematic studies to identify candidate ID genes, linkage analysis and next-generation sequencing revealed Zinc Finger and BTB Domain Containing 11 (ZBTB11) as a novel candidate ID gene. ZBTB11 encodes a little-studied transcription regulator, and the two identified missense variants in this study are predicted to disrupt canonical Zn2+-binding residues of its C2H2 zinc finger domain, leading to possible altered DNA binding. Using HEK293T cells transfected with wild-type and mutant GFP-ZBTB11 constructs, we found the ZBTB11 mutants being excluded from the nucleolus, where the wild-type recombinant protein is predominantly localized. Pathway analysis applied to ChIP-seq data deposited in the ENCODE database supports the localization of ZBTB11 in nucleoli, highlighting associated pathways such as ribosomal RNA synthesis, ribosomal assembly, RNA modification and stress sensing, and provides a direct link between subcellular ZBTB11 location and its function. Furthermore, given the report of prominent brain and spinal cord degeneration in a zebrafish Zbtb11 mutant, we investigated ZBTB11-ortholog knockdown in Drosophila melanogaster brain by targeting RNAi using the UAS/Gal4 system. The observed approximate reduction to a third of the mushroom body size-possibly through neuronal reduction or degeneration-may affect neuronal circuits in the brain that are required for adaptive behavior, specifying the role of this gene in the nervous system. In conclusion, we report two ID families segregating ZBTB11 biallelic mutations disrupting Zn2+-binding motifs and provide functional evidence linking ZBTB11 dysfunction to this phenotype.


Assuntos
Deficiência Intelectual/genética , Sistema Nervoso/metabolismo , Proteínas Repressoras/genética , Medula Espinal/metabolismo , Proteínas de Peixe-Zebra/genética , Animais , Modelos Animais de Doenças , Drosophila melanogaster/genética , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Deficiência Intelectual/patologia , Mutação de Sentido Incorreto/genética , Sistema Nervoso/patologia , Fenótipo , Ligação Proteica , Medula Espinal/patologia , Peixe-Zebra/genética
10.
J Mol Cell Biol ; 8(2): 129-43, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26892023

RESUMO

Mitochondria-associated endoplasmic reticulum membranes (MAM) play a key role in mitochondrial dynamics and function and in hepatic insulin action. Whereas mitochondria are important regulators of energy metabolism, the nutritional regulation of MAM in the liver and its role in the adaptation of mitochondria physiology to nutrient availability are unknown. In this study, we found that the fasted to postprandial transition reduced the number of endoplasmic reticulum-mitochondria contact points in mouse liver. Screening of potential hormonal/metabolic signals revealed glucose as the main nutritional regulator of hepatic MAM integrity both in vitro and in vivo Glucose reduced organelle interactions through the pentose phosphate-protein phosphatase 2A (PP-PP2A) pathway, induced mitochondria fission, and impaired respiration. Blocking MAM reduction counteracted glucose-induced mitochondrial alterations. Furthermore, disruption of MAM integrity mimicked effects of glucose on mitochondria dynamics and function. This glucose-sensing system is deficient in the liver of insulin-resistant ob/ob and cyclophilin D-KO mice, both characterized by chronic disruption of MAM integrity, mitochondrial fission, and altered mitochondrial respiration. These data indicate that MAM contribute to the hepatic glucose-sensing system, allowing regulation of mitochondria dynamics and function during nutritional transition. Chronic disruption of MAM may participate in hepatic mitochondrial dysfunction associated with insulin resistance.


Assuntos
Retículo Endoplasmático/metabolismo , Glucose/farmacologia , Membranas Intracelulares/metabolismo , Fígado/metabolismo , Mitocôndrias/metabolismo , Animais , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Retículo Endoplasmático/ultraestrutura , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Membranas Intracelulares/efeitos dos fármacos , Fígado/efeitos dos fármacos , Camundongos , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Estado Nutricional/efeitos dos fármacos , Fosfoproteínas Fosfatases/metabolismo , Período Pós-Prandial/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Canal de Ânion 1 Dependente de Voltagem/metabolismo
11.
J Thorac Cardiovasc Surg ; 150(6): 1641-8.e2, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26384749

RESUMO

OBJECTIVES: The aims of this study were to evaluate whether the delayed application of low-pressure reperfusion could reduce lethal reperfusion injury and whether the inhibition of the opening of the mitochondrial permeability transition pore is involved in this protection. METHODS: Isolated rat hearts (n = 120) underwent 40 minutes of global ischemia followed by 60 minutes of reperfusion. Hearts were randomly assigned to the following groups: control, postconditioning (comprising 2 episodes of 30 seconds of ischemia and 30 seconds of reperfusion), and low-pressure reperfusion (using a reduction of perfusion pressure at 70 cm H2O for 10 minutes). In additional groups, postconditioning and low-pressure reperfusion were applied after a delay of 3, 10, and 20 minutes after the initial 40-minute ischemic insult. RESULTS: As expected, infarct size (triphenyltetrazolium chloride staining) and lactate dehydrogenase release were significantly reduced in low-pressure reperfusion and postconditioning versus controls (P < .01), whereas functional parameters (coronary flow, rate pressure product) were improved (P < .01). Although delaying postconditioning by more than 3 minutes resulted in a loss of protection, low-pressure reperfusion still significantly reduced infarct size when applied as late as 20 minutes after reperfusion. This delayed low-pressure reperfusion protection was associated with an improved mitochondrial respiration, lower reactive oxygen species production, and enhanced calcium retention capacity, related to inhibition of permeability transition pore opening. CONCLUSIONS: We demonstrated for the first time that low-pressure reperfusion can reduce lethal myocardial reperfusion injury even when performed 10 to 20 minutes after the initiation of reperfusion.


Assuntos
Traumatismo por Reperfusão Miocárdica/prevenção & controle , Animais , Pressão Sanguínea/fisiologia , Modelos Animais de Doenças , Precondicionamento Isquêmico Miocárdico , Masculino , Proteínas de Transporte da Membrana Mitocondrial , Poro de Transição de Permeabilidade Mitocondrial , Distribuição Aleatória , Ratos , Ratos Wistar
12.
J Mol Cell Cardiol ; 78: 80-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25281838

RESUMO

Reperfusion is characterized by a deregulation of ion homeostasis and generation of reactive oxygen species that enhance the ischemia-related tissue damage culminating in cell death. The mitochondrial permeability transition pore (mPTP) has been established as an important mediator of ischemia-reperfusion (IR)-induced necrotic cell death. Although a handful of proteins have been proposed to contribute in mPTP induction, cyclophilin D (CypD) remains its only bona fide regulatory component. In this review we summarize existing knowledge on the involvement of CypD in mPTP formation in general and its relevance to cardiac IR injury in specific. Moreover, we provide insights of recent advancements on additional functions of CypD depending on its interaction partners and post-translational modifications. Finally we emphasize the therapeutic strategies targeting CypD in myocardial IR injury. This article is part of a Special Issue entitled "Mitochondria: From Basic Mitochondrial Biology to Cardiovascular Disease".


Assuntos
Cálcio/metabolismo , Ciclofilinas/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Animais , Proteínas de Transporte/metabolismo , Morte Celular , Humanos , Mitocôndrias Cardíacas/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Ligação Proteica , Processamento de Proteína Pós-Traducional , Transdução de Sinais
13.
Vitam Horm ; 95: 63-86, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24559914

RESUMO

Pancreatic ß-cells are the only cells capable of lowering blood glucose by secreting insulin. The ß-cell continuously adjusts its secretory activity to substrate availability in order to keep blood glucose levels within the physiological range--a process called metabolism-secretion coupling. Glucose is readily taken up by the ß-cell and broken down into intermediates that fuel oxidative metabolism inside the mitochondria to generate ATP. The resulting increase in the ATP/ADP ratio causes closure of plasma membrane KATP channels, thereby depolarizing the cell and triggering the opening of voltage-gated Ca²âº channels. Consequential oscillations of cytosolic Ca²âº not only mediate the exocytosis of insulin granules but are also relayed to other subcellular compartments including the mitochondria, where Ca²âº is required to accelerate mitochondrial metabolism in response to nutrient stimulation. The mitochondrial Ca²âº uptake machinery plays a fundamental role in this feed-forward mechanism that guarantees sustained insulin secretion and, thus, represents a promising therapeutic target for type 2 diabetes.


Assuntos
Sinalização do Cálcio , Metabolismo Energético , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Mitocôndrias/metabolismo , Modelos Biológicos , Regulação para Cima , Animais , Células Clonais , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Diabetes Mellitus Tipo 2/fisiopatologia , Humanos , Secreção de Insulina , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/patologia , Pâncreas/citologia , Pâncreas/patologia , Pâncreas/fisiologia , Pâncreas/fisiopatologia
14.
Pflugers Arch ; 466(7): 1411-20, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24162235

RESUMO

A protein referred to as CCDC109A and then renamed to mitochondrial calcium uniporter (MCU) has recently been shown to accomplish mitochondrial Ca(2+) uptake in different cell types. In this study, we investigated whole-mitoplast inward cation currents and single Ca(2+) channel activities in mitoplasts prepared from stable MCU knockdown HeLa cells using the patch-clamp technique. In whole-mitoplast configuration, diminution of MCU considerably reduced inward Ca(2+) and Na(+) currents. This was accompanied by a decrease in occurrence of single channel activity of the intermediate conductance mitochondrial Ca(2+) current (i-MCC). However, ablation of MCU yielded a compensatory 2.3-fold elevation in the occurrence of the extra large conductance mitochondrial Ca(2+) current (xl-MCC), while the occurrence of bursting currents (b-MCC) remained unaltered. These data reveal i-MCC as MCU-dependent current while xl-MCC and b-MCC seem to be rather MCU-independent, thus, pointing to the engagement of at least two molecularly distinct mitochondrial Ca(2+) channels.


Assuntos
Potenciais de Ação , Canais de Cálcio/metabolismo , Membranas Mitocondriais/metabolismo , Cálcio/metabolismo , Canais de Cálcio/genética , Células HeLa , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Sódio/metabolismo
15.
J Biol Chem ; 288(21): 15367-79, 2013 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-23592775

RESUMO

The transfer of Ca(2+) across the inner mitochondrial membrane is an important physiological process linked to the regulation of metabolism, signal transduction, and cell death. While the definite molecular composition of mitochondrial Ca(2+) uptake sites remains unknown, several proteins of the inner mitochondrial membrane, that are likely to accomplish mitochondrial Ca(2+) fluxes, have been described: the novel uncoupling proteins 2 and 3, the leucine zipper-EF-hand containing transmembrane protein 1 and the mitochondrial calcium uniporter. It is unclear whether these proteins contribute to one unique mitochondrial Ca(2+) uptake pathway or establish distinct routes for mitochondrial Ca(2+) sequestration. In this study, we show that a modulation of Ca(2+) release from the endoplasmic reticulum by inhibition of the sarco/endoplasmatic reticulum ATPase modifies cytosolic Ca(2+) signals and consequently switches mitochondrial Ca(2+) uptake from an uncoupling protein 3- and mitochondrial calcium uniporter-dependent, but leucine zipper-EF-hand containing transmembrane protein 1-independent to a leucine zipper-EF-hand containing transmembrane protein 1- and mitochondrial calcium uniporter-mediated, but uncoupling protein 3-independent pathway. Thus, the activity of sarco/endoplasmatic reticulum ATPase is significant for the mode of mitochondrial Ca(2+) sequestration and determines which mitochondrial proteins might actually accomplish the transfer of Ca(2+) across the inner mitochondrial membrane. Moreover, our findings herein support the existence of distinct mitochondrial Ca(2+) uptake routes that might be essential to ensure an efficient ion transfer into mitochondria despite heterogeneous cytosolic Ca(2+) rises.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Canais Iônicos/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Retículo Endoplasmático/genética , Células HeLa , Humanos , Canais Iônicos/genética , Mitocôndrias/genética , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Proteína Desacopladora 1
16.
J Cell Sci ; 126(Pt 4): 879-88, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23239024

RESUMO

The endocannabiniod anandamide (AEA) and its derivate N-arachidonoyl glycine (NAGly) have a broad spectrum of physiological effects, which are induced by both binding to receptors and receptor-independent modulations of ion channels and transporters. The impact of AEA and NAGly on store-operated Ca(2+) entry (SOCE), a ubiquitous Ca(2+) entry pathway regulating many cellular functions, is unknown. Here we show that NAGly, but not AEA reversibly hinders SOCE in a time- and concentration-dependent manner. The inhibitory effect of NAGly on SOCE was found in the human endothelial cell line EA.hy926, the rat pancreatic ß-cell line INS-1 832/13, and the rat basophilic leukemia cell line RBL-2H3. NAGly diminished SOCE independently from the mode of Ca(2+) depletion of the endoplasmic reticulum, whereas it had no effect on Ca(2+) entry through L-type voltage-gated Ca(2+) channels. Enhanced Ca(2+) entry was effectively hampered by NAGly in cells overexpressing the key molecular constituents of SOCE, stromal interacting molecule 1 (STIM1) and the pore-forming subunit of SOCE channels, Orai1. Fluorescence microscopy revealed that NAGly did not affect STIM1 oligomerization, STIM1 clustering, or the colocalization of STIM1 with Orai1, which were induced by Ca(2+) depletion of the endoplasmic reticulum. In contrast, independently from its slow depolarizing effect on mitochondria, NAGly instantly and strongly diminished the interaction of STIM1 with Orai1, indicating that NAGly inhibits SOCE primarily by uncoupling STIM1 from Orai1. In summary, our findings revealed the STIM1-Orai1-mediated SOCE machinery as a molecular target of NAGly, which might have many implications in cell physiology.


Assuntos
Ácidos Araquidônicos/farmacologia , Canais de Cálcio/metabolismo , Cálcio/metabolismo , Endocanabinoides/farmacologia , Glicina/análogos & derivados , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Glicina/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Microscopia de Fluorescência , Proteína ORAI1 , Ligação Proteica/efeitos dos fármacos , Ratos , Molécula 1 de Interação Estromal
17.
PLoS One ; 7(9): e45917, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23029314

RESUMO

The transfer of Ca(2+) from the cytosol into the lumen of mitochondria is a crucial process that impacts cell signaling in multiple ways. Cytosolic Ca(2+) ([Ca(2+)](cyto)) can be excellently quantified with the ratiometric Ca(2+) probe fura-2, while genetically encoded Förster resonance energy transfer (FRET)-based fluorescent Ca(2+) sensors, the cameleons, are efficiently used to specifically measure Ca(2+) within organelles. However, because of a significant overlap of the fura-2 emission with the spectra of the cyan and yellow fluorescent protein of most of the existing cameleons, the measurement of fura-2 and cameleons within one given cell is a complex task. In this study, we introduce a novel approach to simultaneously assess [Ca(2+)](cyto) and mitochondrial Ca(2+) ([Ca(2+)](mito)) signals at the single cell level. In order to eliminate the spectral overlap we developed a novel red-shifted cameleon, D1GO-Cam, in which the green and orange fluorescent proteins were used as the FRET pair. This ratiometric Ca(2+) probe could be successfully targeted to mitochondria and was suitable to be used simultaneously with fura-2 to correlate [Ca(2+)](cyto) and [Ca(2+)](mito) within same individual cells. Our data indicate that depending on the kinetics of [Ca(2+)](cyto) rises there is a significant lag between onset of [Ca(2+)](cyto) and [Ca(2+)](mito) signals, pointing to a certain threshold of [Ca(2+)](cyto) necessary to activate mitochondrial Ca(2+) uptake. The temporal correlation between [Ca(2+)](mito) and [Ca(2+)](cyto) as well as the efficiency of the transfer of Ca(2+) from the cytosol into mitochondria varies between different cell types. Moreover, slow mitochondrial Ca(2+) extrusion and a desensitization of mitochondrial Ca(2+) uptake cause a clear difference in patterns of mitochondrial and cytosolic Ca(2+) oscillations of pancreatic beta-cells in response to D-glucose.


Assuntos
Sinalização do Cálcio , Proteínas de Ligação ao Cálcio/química , Citoplasma/metabolismo , Proteínas de Fluorescência Verde/química , Mitocôndrias/metabolismo , Proteínas Recombinantes de Fusão/química , Canais de Cálcio Tipo L/metabolismo , Proteínas de Ligação ao Cálcio/biossíntese , Proteínas de Ligação ao Cálcio/genética , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Fura-2/química , Fura-2/metabolismo , Glucose/farmacologia , Glucose/fisiologia , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Células HeLa , Humanos , Células Secretoras de Insulina/metabolismo , Transporte Proteico , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética
18.
J Biol Chem ; 287(41): 34445-54, 2012 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-22904319

RESUMO

In pancreatic ß-cells, uptake of Ca(2+) into mitochondria facilitates metabolism-secretion coupling by activation of various matrix enzymes, thus facilitating ATP generation by oxidative phosphorylation and, in turn, augmenting insulin release. We employed an siRNA-based approach to evaluate the individual contribution of four proteins that were recently described to be engaged in mitochondrial Ca(2+) sequestration in clonal INS-1 832/13 pancreatic ß-cells: the mitochondrial Ca(2+) uptake 1 (MICU1), mitochondrial Ca(2+) uniporter (MCU), uncoupling protein 2 (UCP2), and leucine zipper EF-hand-containing transmembrane protein 1 (LETM1). Using a FRET-based genetically encoded Ca(2+) sensor targeted to mitochondria, we show that a transient knockdown of MICU1 or MCU diminished mitochondrial Ca(2+) uptake upon both intracellular Ca(2+) release and Ca(2+) entry via L-type channels. In contrast, knockdown of UCP2 and LETM1 exclusively reduced mitochondrial Ca(2+) uptake in response to either intracellular Ca(2+) release or Ca(2+) entry, respectively. Therefore, we further investigated the role of MICU1 and MCU in metabolism-secretion coupling. Diminution of MICU1 or MCU reduced mitochondrial Ca(2+) uptake in response to d-glucose, whereas d-glucose-triggered cytosolic Ca(2+) oscillations remained unaffected. Moreover, d-glucose-evoked increases in cytosolic ATP and d-glucose-stimulated insulin secretion were diminished in MICU1- or MCU-silenced cells. Our data highlight the crucial role of MICU1 and MCU in mitochondrial Ca(2+) uptake in pancreatic ß-cells and their involvement in the positive feedback required for sustained insulin secretion.


Assuntos
Canais de Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Cálcio/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Canais de Cálcio/genética , Proteínas de Ligação ao Cálcio/genética , Proteínas de Transporte de Cátions/genética , Linhagem Celular , Endopeptidases/genética , Endopeptidases/metabolismo , Técnicas de Silenciamento de Genes , Glucose/genética , Glucose/metabolismo , Humanos , Insulina/genética , Secreção de Insulina , Células Secretoras de Insulina/citologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Ubiquitina Tiolesterase
19.
Mol Cell Endocrinol ; 353(1-2): 114-27, 2012 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-22100614

RESUMO

Mitochondrial Ca(2+) sequestration is a well-known process that is involved in various physiological and pathological mechanisms. Using isolated suspended mitochondria one unique mitochondrial Ca(2+) uniporter was considered to account ubiquitously for the transfer of Ca(2+) into these organelles. However, by applying alternative techniques for measuring mitochondrial Ca(2+) uptake evidences for molecularly distinct mitochondrial Ca(2+) carriers accumulated recently. Herein we compared different methodical approaches of studying mitochondrial Ca(2+) uptake. Patch clamp technique on mitoplasts from endothelial and HeLa cells revealed the existence of three and two mitoplast Ca(2+) currents (I(CaMito)), respectively. According to their conductance, these channels were named small (s-), intermediate (i-), large (l-) and extra-large (xl-) mitoplast Ca(2+) currents (MCC). i-MCC was found in mitoplasts of both cell types whereas s-MCC and l-MCC or xl-MCC were/was exclusively found in mitoplasts from endothelial cells or HeLa cells. The comparison of mitochondrial Ca(2+) signals, measured either indirectly by sensing extra-mitochondrial Ca(2+) or directly by recording changes of the matrix Ca(2+), showed different Ca(2+) sensitivities of the distinct mitochondrial Ca(2+) uptake routes. Subpopulations of mitochondria with different Ca(2+) uptake capacities in intact endothelial cells could be identified using Rhod-2/AM. In contrast, cells expressing mitochondrial targeted pericam or cameleon (4mtD3cpv) showed homogeneous mitochondrial Ca(2+) signals in response to cell stimulation. The comparison of different experimental approaches and protocols using isolated organelles, permeabilized and intact cells, pointed to cell-type specific and versatile pathways for mitochondrial Ca(2+) uptake. Moreover, this work highlights the necessity of the utilization of multiple technical approaches to study the complexity of mitochondrial Ca(2+) homeostasis.


Assuntos
Cálcio/metabolismo , Células Endoteliais/metabolismo , Homeostase/fisiologia , Mitocôndrias/metabolismo , Células Endoteliais/citologia , Células HeLa , Humanos , Transporte de Íons/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...